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The turbulent boundary layer in a comer 

By G. M. BRAGGT 
Engineering Department, University of Cambridge 

(Received 10 February 1968 and in revised form 15 October 1968) 

Turbulent flow along the axis of a 90" corner is considered. Experimental 
measurements of velocities, wall shear stresses and p, the turbulent normal 
stress in the streamwise direction, have been made. The data are considered both 
from the point of view of momentum integral and similarity analyses. A suitable 
momentum integral equation is easily derived but difficult to use due to the form 
of the terms which must be measured. Similarity techniques give a series of 
correlations which describe the flow over a narrow range of Reynolds number for 
which data are available. There is experimental evidence for secondary currents 
in this type of flow but their analysis presents considerable difficulty. 

1. Introduction 
The turbulent boundary layer in a corner represents a fairly simple three- 

dimensional turbulent flow and has some practical importance. We may expect 
that the problem will be complicated by the presence of secondary flows of the 
type found in fully developed flow in non-circular ducts. Previous work on flows 
of this sort has been done by Eichelbrenner (1961, 1965), Gersten & Miyashiro 
(1960) and others. The findings of Paradis (1963) are also relevant. Early work 
was mainly concerned with analyses of the ' 1/7 power law' type extended to the 
corner region. 

As is usual in turbulent shear flows exact analytical techniques are impossible. 
However, by making assumptions of the kind that are commonly used in turbu- 
lent boundary-layer theory we may arrive at  simplified forms of the Navier- 
Stokes equations, including Reynolds stresses. The assumptions made are : (i) that 
rates of variation of quantities in the streamwise direction are small with respect 
to changes of the same quantities in the direction orthogonal to the free stream 
flow and, (ii) that turbulent fluctuations are small with respect to the main 
streamwise velocities. On this basis we may arrive by the usual methods at  
simplified forms of these equations. It should be noted that within the region 
considered the equations might locally assume even simpler forms. For example, 
near one wall far from the corner the equations will take the form usual to two- 
dimensional turbulent boundary layers. 

Assume a Cartesian system as in figure 1 with axes x, y and x and velocity 
components, U ,  V and W respectively. The x-axis lies along the axis of the corner 

t Present address : Department of Mechanical Engineering, University of Waterloo, 
Waterloo, Ontario. 
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V 

FIGURE 1. Reference system. 

with the origin at  the leading edge of the two walls and the y- and x-axes oriented 
along the leading edges of the walls which are at 90" to each other. 

If we retain only terms of first-order (i.e. rejecting terms of order 6 and S2 in 
the usual terminology by assuming that the secondary velocities are of the order 
of v,, the normal velocity at  the edge of the boundary layer) we arrive at: 

and 

where 

and 

au av aw 
ax ay ax 
-+-+- = 0, 

The y- and x-direction equations contain no first-order terms. 
It is obvious that if any details of the flow such as possible secondary currents 

are to be accurately described we must use equations containing more terms 
than equations (1) and (2) but we hope that these equations might serve as a 
useful description of the overall flow in that corner region. As mentioned before, 
the equations could be simplified if local regions within the corner flow were 
considered. 

2. Experiments 
The experimental arrangement consisted of two plates 16 in. wide by 56 in.. 

long by fin.  thick arranged a t  right angles to each other and sealed along the 
vertex. The leading edges were faired and trip wires 0.024in. in diameter were 



Turbulent boundary layer in a corner 487 

placed 1 in. from the leading edges. The plates were mounted symmetrically in 
a wind tunnel. To obtain an adverse pressure gradient in the boundary layer, 
blocking plates were arranged 37in. downstream from the trip wire and the 
height adjusted locally so that the pressure distributions were as nearly as possible 
the same at  different distances from the corner. Static pressure holes were tapped 
at  a series of points on both surfaces. The pressure distributions for the two cases 
atudied are shown in figure 2. Henceforth in this paper the experiments per- 
formed under nearly zero pressure gradient will be called series I and those 
performed under the adverse pressure gradient conditions will be called series 11. 

0 10 20 30 40 
- 
40 

0 

x (in.) 

FIGURE 2.  Static pressure distributions at 1 in. from the vertex and 12 in. from the vertex 
for the two pressure gradients measured. Series I : 0 ,  Y = 2 = 1 in. ; x , Y = 2 = 12 in. 
SeriesII: A, Y = Z =  lin.; + , Y  = Z  = 12in. 

Since the plates were not of infinite width in the y- and 2-directions the possi- 
bility of effects due to this fact was checked. The plates were widened by Sin. 
and no measureable effects on wall shear stress or velocity were found in the 
corner region. This is not unexpected since in the worst case the width of the 
plates was approximatly 25 times the two-dimensional boundary-layer thick- 
ness. This is consistent with the findings of Davies & Young (1963) who found 
that edge effects of this sort extended only to about twice the boundary-layer 
thickness from the edge. 

The velocities were measured with the aid of a Pitot tube, the turbulent 
fluctuations using a commercial hot-wire anemometer and the wall shear stresses 
were evaluated by the Preston tube method. In each case where a wall shear 
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stress is presented at least two data points on a line normal to the surface were 
checked against the standard ‘ inner law ’ relationships. 

It was found that very near each wall the ‘inner law’ relationships gave an 
accurate description of the flow except very close to the corner. 

Considerable difficulties were encountered in obtaining a flow which was closely 
symmetrical about the bisecting plane of the corner. Any small difference in 
upstream conditions between the two plates caused considerable asymmetry 
of the flow. This problem has also been encountered by Gessner & Jones (1961) 
and by Paradis (1963). The implication of this is that a closely symmetrical flow 
is unlikely to ocour in other than closely controlled laboratory conditions. 

z (in.) 

FIGURE 3. Isotach plot of velocities in the corner, 
X = 30 in. U,, = 75-6ft./sec, ROz = 3370. Series I. 

Typical plots of mean flow velocities, ,/G, and wall shear stresses are presented 
in figures 3-5 for zero pressure gradient. The Reynolds number is 3370 using 
free-stream velocity and the boundary-layer momentum thickness at  the same 
streamwise position but far from the corner. Additional measurements of 
velocities, 4 7 2  and wall shear stresses were made at  RO, = 2740 and 3060 in the 
zero pressure gradient flow and R02 = 2510,3140 and 3960 in the adverse pressure 
gradient flow. This data showed similar behaviour to that presented here. Re- 
liable measurements of secondary currents have yet to be made but it is expected 
that the technique of Brundrett & Baines (1964) should furnish quite reliable 
data. More complete descriptions and tabulations of the measurements may be 
found in Bragg (1965). 
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FIGURE 4. Lines of constant Jux/U0, series I, X = 30in, RO2 = 3370. 

3. Momentum integrals 
A useful form of (1) and (2) may be derived by integrating (1) over y and z and 

eliminating the velocities V and W by the use of (2). This will give an integral 
relation very similar to the momentum integral equation used in the study of 
two-dimensional boundary layers. It is possible to integrate a set of equations 
containing second-order terms with respect to y and z, but the resulting relation 
includes triple integrals and is therefore not practically useful. 

If we perform the integration of (1) and make use of the symmetry of the flow 
we can obtain 

where h is very much greater than the range of y and z under consideration, 
U, is the free stream velocity and T,(z) is the wall shear stress on the y = 0 wall. 
A necessary assumption in deriving this equation is that 

[ V (  uo - U)]y=h 1: 
is zero. This does not contradict continuity if we assume that V = 0 only in the 
region where U,- U + 0 and that this region is small with respect to h. An 
equation similar to (3) has been derived by Louis (1958) and Gersten & Miyashiro 
(1960) also derive a similar equation. The advantage of Gersten & Miyashiro’s 
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(1960) equation is that by subtracting an 'equivalent two-dimensional form ' 
from (3) they obtain integral quantities which tend to a finite limit as h -+ co. 
The disadvantage of this form is that the values of the integrated quantities 
turn out to be extremely small when evaluated experimentally and therefore 
have margins of error several times larger than the evaluated quantity, i.e. the 
effect of the corner on integrated quantities other than wall shear stress is less 
than errors of measurement. It seems then that (3) represents the most useful 
form at present if momentum integral techniques are to be used to describe corner 
flow. The data from the present experiments were used to evaluate both sides 
of (3) and the discrepancy was of the order of 10 yo in the worst case. This is 
similar to the experimental agreement obtained in similar checks with the two- 
dimensional momentum integral equation. The agreement was worst near 
separation in the adverse pressure gradient case as might be expected and was 
closer to 5 % in the worst case of the zero pressure gradient data. 

4. The viscous corner region 
Deep in the corner region we may expect that the turbulent fluctuations are 

small. For zero pressure gradient we assume that, as in the analogous two- 
dimensional case very near the wall, the flow is described by the laminar solutions. 

The laminar case has been studied by Pearson (1957) who assumed a solution 

(4) 
of the form 

where A ,  must be zero and 

U/Uo = Al+A,111S+A311292+A411393+ ..., 

7 = yZj(U,/vx) and 5 = zZj(Uo/vx). 
Very close to the wall we may consider only the first non-zero term in (4) and then 

ul'Q = '27c 

or U / U ,  = A, U,p/Vx. ( 5 )  

We define a velocity scale U,, where 

z=o 
Substitution of this in (5) gives 

u/u, = (U,Y/V) (u,zlv). (6) 

This is a form closely analogous to the form 

= KYiV 
used to describe the form of the velocity profile close to the wall in the two- 
dimensional turbulent boundary layer. 

It is interesting to note from (6) that a t  the corner the gradient of velocity 
along the bisecting plane is zero. This is required if discontinuities in fluid stresses 
are to be avoided in the region. 
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Unfortunately it was not possible in the present experiments to test (6) 
against experimental data since it was not possible to measure velocities suffi- 
ciently close to the corner. 

5. Wall shear stresses 
The general behaviour of the wall shear stresses may be seen in figures 5 and 6. 

In  general terms, as the corner is approached the wall shear drops slowly over the 
outer part of the corner region to a value of approximately 0 . 7 5 ~ ~ ~  where T~~ is 
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FIGURE 5. Wall shear stresses in zero pressure gradient: x , Y = 0; 0,Z = 0; 
series I, X = 30in., Ro2 = 3370, T ~ ,  = 0*01951b./ft.a at Y = 5.3in. 

the value very far from the corner. At this point there is an inflexion, where the 
shear stress seems to rise again or at  least stay constant for a small distance. 
Closer to the corner the wall shear stresses will drop to zero since at y = 0, 

It is natural to introduce UT2, where U7, is the wall shear velocity far from the 
corner, as a velocity scale which may describe part of the wall shear stress distri- 
bution. Values of U, = , / ( ~ ~ / p )  are plotted in figure 7 as values of U,/VTB versus 

aulaz = 0. 
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FIGURE 6. Wall shear stresses in adverse pressure gradient: 0, Y = 0; x , 2 = 0, 
series 11, X = 20in., R02 = 2510, T , , ~  = 0.01981b/ft.z at Y = 5.3in. 

2 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 

log U7, ylv or log U,2zlv 

FIGURE 7. Wall shear stresses in the corner in zero pressure gradient. Series I: 
0, RBp = 2740; A, Rot = 3060; , R,, = 3370. Average values for the two walls are given. 
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log (U7, ylv)  or log (U7,z/v). It is seen that this type of plot gives an empirical 
correlation over the range 

1000 < U,, ylv < 2520, 

for the range of Reynolds numbers considered. While there is no evident reason 
why it should be so, it seems that the behaviour of the wall shear stress in this 
region may be approximated for the range of Reynolds numbers available by 
a straight line given by 

U,/U,, = 0.310g (U,,y/V) -00.015. 

This region takes in approximately 60% of the region of corner influence. In 
addition we see that U,, ylv = 2520 may be used as an empirical measure of the 
region of influence of the corner on the wall shear stress. At the experimental 
range of Reynolds numbers this corresponds to a value of approximately 26, 
where Sis the thickness of the boundary layer far from the corner. It is easily seen 
that even the postulated empirical relationship does not correlate the wall shear 
stress closer to the corner than U,, ylv = 1000. The difficulty obviously lies in 
assuming that U,, is a velocity scale which defines the wall shear stress deep in the 
corner. It seems, then, that if another velocity scale was defined for this region 
we might be able to show some form of local similarity in this region. 

A possible velocity scale for this inner region would be 

which is the velocity scale proposed to describe the viscous corner region. How- 
ever, as stated previously it was not possible to measure this quantity in the 
present experiments. For practical reasons, then, it is necessary to find another 
velocity scale. The scale chosen will, we hope, bear a constant relationship to U,, 
independent of Reynolds number. A velocity scale may be arrived at by con- 
sidering the range 2.10 < log (U7, ylv)  < 2.85 in figure 7 which gives the data for 
zero pressure gradient. We see that straight lines may be drawn through the 
various sets of data as shown. This implies that we may write 

for this region, where K ,  and K ,  are parameters depending on the Reynolds 
number and we consider for the present only zero pressure gradient. 

Differentiation of (7) with respect to y and rearrangement gives 

where U, is defined by this equation. U, is seen to have the dimensions of velocity 
and to be a constant for each profile in the region under consideration. This 
quantity will be a function of Reynolds number and is easily evaluated as 
U,, K ,  where K ,  is the slope of the wall shear stress distribution over the region 
in the form U,./U,, us. log ( U,, y /v ) .  

Now since U, = U,,K, we may substitute for U,, in (7). Then 

UrluK = log (UiYlV)  + F ,  (8 )  
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where J' = (K,/K,) -log K,. F must, until proven otherwise, be assumed a func- 
tion of Reynolds number. Values of UJU, 'US. log (U,Y/Y) are shown in figure 8 
for the Reynolds number and pressure gradients measured. The conclusions to 
be drawn from this figure are that F may be considered nearly independent 
of Reynolds number for the range of Reynolds numbers measured and that (8) 
may be considered as an empirical similarity relationship predicting the wall 

FIGURE 8. Wall shear stresses in the inner region, series I. 0, RfiA = 2740, Y = 0 ;  x , 

shear stress distribution in the corner region for zero gradient. The value of F 
agreeing most closely with the data is 5.07. The collapse of data for the adverse 
pressure gradient case studied was poor except at  a far upstream point before the 
pressure gradient had risen significantly. A similar form for (8) might have been 
arrived at  by assuming a form of local similarity for this region such that U, was 
a function of U,, y and Y only. The logarithmic form of (8) is implicit in our defini- 
tion of the velocity scale U, but it is still necessary to revert to experiments to 
show that F is nearly independent of Reynolds number and therefore that U, is 
a function of U,, y and Y only. It should be noted that experimental evidence 
justifies this relation only down to log ( UKy/v) = 0.6. It should also be noted that 
the 'log law' of two-dimensional turbulent boundary layers may be arrived at 
by reasoning similar to that used in deriving (8). 
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6. Mean streamwise velocities 
The experiments undertaken showed that near each wall quite far into the 

corner, the two-dimensional inner law correlated the mean flow velocities quite 
well. As far into the corner as it was possible to measure velocities and wall shear 
stresses, the inner law describes the flow out to a value of U, ylv  of approximately 
60 if U, is the wall shear stress on the y = 0 wall and y is the distance normal to 
the wall. Far from the corner the region described by the inner law will be the 
same as in the two-dimensional boundary layer. This decrease in the range of y 
for which the logarithmic law is valid is obviously due to the influence of the 
x = 0 wall. The fact that the inner law describes the flow when y z or when 
z 9 y is the justification for the use of Preston tubes to measure wall shear stresses. 
This behaviour is similar to that found by Leutheusser (1963) in fully developed 
flow in square ducts. 

There is a region deep in the corner and near the plane of symmetry but still 
in the fully turbulent region where the velocity gradients are large but where the 
velocities are not correlated by the usual logarithmic law. This region is likely 
to exhibit local similarity although here the effect of both walls will need to be 
taken into account. 

If local similarity does apply in this region is should be possible to describe U 
as a function of the wall shear stresses: the lengths y and x and the fluid properties 

where UTV and U, are defined as the wall shear velocities on the y = 0 and z = 0 
walls respectively. However our consideration of the wall shear stresses led to 
the conclusion that for the turbulent inner region of the corner 

and 

without loss of generality. In  non-dimensional form this becomes 

This relation will hold if the flow in the region considered is completely deter- 
mined by local wall shear stresses, the fluids properties and the distance fromeach 
wall. 

Consider now the outer region of the corner boundary layer. We confine our- 
selves for the present to the case of zero streamwise pressure gradient. In  the 
two-dimensional case the flow in this region is described by the velocity defect law 

where y = 8, defines the edge of the boundary layer. 
In  general terms this law is derived by reasoning that the velocity defect in 

the outer region is independent of viscosity and is a function of the wall shear 
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stress and the distance from the wall, S,, to which the effect has diffused. By this 
argument 
from which (10) follows. 

suggest for the corner flow the relation 

uo - u = 9,(Y, 6 2 9 % )  

The arguments leading in the two-dimensional case to the velocity defect law 

(11) 
6' is defined as the distance measured along the plane of symmetry from the 
corner to where 

U, is the velocity scale determining the shear stress deep in the corner. Strictly 
speaking, Uo - U should also be dependent upon U7,. If we restrict our argument 
to the flow adjacent to the region of wall shear stresses described by (8) and near 
the plane of symmetry, the influence of U, should be large compared to the 
influence of U7, and (11) should be a valid approximation. Writing (11) in 
dimensionless form we obtain 

uo - u = SdY, 2, u,, 6'). 

up, = 04-39. 

G o  - W l U ,  = Sa(Y/S', 4s'). (12) 
We now enquire, as in an analogous derivation of the two-dimensional 

logarithmic law, whether or not there is a region over which both (9) and (12) 
are valid. If there is a region of overlap the functional form whichf, and g, may 
take is restricted. We may write (9) as 

u/uK = f4[(Y/s') (uKS'/v), (z/s ')  cuK s'/v)l (13) 

and (12) as OlUK (uO/uK) -g4(Y/6'? z/s'). (14) 
These are two expressions for the same quantity if the two regions overlap. In (1  3) 
the factors y/S' and z/6' are multiplicative factors and in (14) are additive. The 
functions f4 and g4 must therefore take a logarithmic form. There are, of course, 
an infinite number of forms which fit this requirement. The simplest form, how- 
ever, has been found suitable in the analogous two-dimensional case. A simple 
form which (9) and (12) may take is 

U/U, = Glog(U,y/v)+Glog(U,~/v)+H (15) 

and (Uo- U)/U,  = -Glog(y/6')-Glog(~/S')+I. (16) 

Far from the corner, but inside the boundary layer and near the plane of 
symmetry, we may expect that the more general form 

P o  - U)lU, = 94(YP', 4 0  
will still be retained. Equations (15) and (16) may, of course, be written in 

U/U, = Glog (USp/v2) + H the form 

and (Uo- U)/U, = - Glog ( y 2 / P )  + I .  

Along the plane of symmetry these equations take the form 

and 

U/U, = 2G10g (U,y/v) + H 

(Uo- U)/UK = -2Glog(y/d')+I. 
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It is, of course, possible to replace y by z in (17) and (18) due to the symmetry 
of the flow. 

If these equations hold over a region, a unique relationship exists between 
U,, 6' and U,, since U ,  y, and z may be eliminated by addition of (15) and (16). 
We then obtain uo/uK = G log ( u& 6"/V2) 4- H + I 
or uo/u, = G log R$( uK/u0)' + H + I ,  (19) 

where Rg' = U,S'/V. 

It is now necessary to test the suggested equations against experimental results. 
Figure 9 gives values of U/U, plotted against log (U,y/v) along the plane of 

200 I 1 I I I I I I 

log U, ylv or log U,z/v 

FIGURE 9. Velocities along the plane of symmetry, inner region, series I and after Paradis 
(1963). 0 ,  Rez = 2740; 0 ,  Re2 = 3060; + , Re2 = 3370; x ,  Rez = 19400, Paradis (1963). 

symmetry for the zero pressure gradient flow and figure 10 gives the same data 
for the case of adverse pressure gradient. The velocities are indeed seen to fall, 
within the range of accuracy of the data, along a straight line for zero pressure 
gradient for log (U,y/v) < 1.95. This line is given by 

U/UK = 2(40) log (UKy/V) + 3.0. 

The correlation fails in the adverse pressure gradient for Rez = 3960 but shows 
fairly good agreement for RBB = 2510 and 3140 out to log(U'y/v) "N 1.9. In 
figures 11 and 12, (Uo- u)/uK is plotted against log (y/S') for the two pressure 
gradients. The correlation is excellent for the zero pressure gradient and for 
Ro3 = 2510 in the adverse pressure gradient, but is only fair for Re, = 3140 
and poor for Rex = 3960 in the adverse pressure gradient. The outer flow not 

32 Fluid Mmh. 36 
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FIGURE 10. Velocities along the plane of symmetry, inner region, series 11. 
0, Re2 = 2510; 0 ,  ROz = 3140; +, RO2 = 3960. 
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FIGURE 11. Velocities in the outer region along the plane of symmetry 0, ROz = 2140, 
series I. , Rea = 3370, series I; + , R02 = 19400, after Paradis (1963). 
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FIGURE 12. Velocities in the outer region along the plane of symmetry, series 11. 
0 ,  Re2 = 2570; 0,  Re2 = 3140; x , Rez = 3960. 

correlated by (19) is seen to fall on a unique curve for zero pressure gradient as 
predicted by (12).t The constants evaluated from figures 9 to 12 are 

G = 40, 

H = 3-0, 

I = 4.2. 

Paradis (1963) has obtained mean flow measurements for a corner boundary 
layer in zero pressure gradient. These results do not include detailed tabulations 
of velocities nor do they include measurements of wall shear stresses. For this 
reason, it is not possible to calculate U, directly. Detailed data are, however, 
given along the plane of symmetry. It is possible to test for an increased range 
of applicability of the various assumptions using this data by calculating U, 
from (19) using the constants obtained from the present results. The value of U, 
obtained from this calculationis 0.410 feet per second. We may now plot Paradis' 
results as a check on the various equations. This has been done in figures 9-11. 
The agreement is seen to be fairly good although slightly different values for the 
constants would be more appropriate. The calculation of U, by (19) is par- 
ticularly sensitive to the choice of G and this would account for the slight 
discrepancies. 

Away from the plane of symmetry but not in the region correlated by the 
two-dimensional logarithmic law we may also compare the measured values with 
those predicted by (15). 

It should be noted that (15) implies that lines of U/U, = constant, are hyper- 
bolae of the form 

yz = constant. 

t Note that VjV, = 0.99 at y = 6'i JZ since y is measured at 45' to 6'. 
32-2 
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figures 13, 14 and 15. The agreement is fair over a range of approximately 
The comparison with the experimental data deep in the corner is made in 

10 < U,y/v or U,x/v < 60 

180 
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I I I I I 1 I I 
UKZ 
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log UETyIv 

FIGURE 14. Velocities in the inner region, series I, R,, = 3370. 0 ,  U K Z ~ V  = 20.5; 
0,  UXzIv = 40.0; x , UKZ/V = 59.1. -, from U/UK = 401og (77: yz/v2) + 3.0. 

for the zero pressure gradient cases. For the adverse pressure gradient with 
R,, = 2510 the agreement is rather worse. The data are not shown for the other 
two measured Reynolds numbers in the adverse pressure gradient but the 
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FIGURE 15. Velocities in the inner region, series 11, Ro2 = 2510. 0 ,  UKzjv = 10.9; 
, u K z / v  = 27.0; X , u K Z / V  = 40.8. -, U / U e  = 4010g ( u&yZ/v2) + 3.0. 
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FXGURE 16. Velocities in the outer region from series I and Paradis (1963). 
Data points are omitted for clarity. 
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agreement was very poor for both these cases so that the correlation fails for 
adverse pressure gradients. 

The correlation does not apply for low values of uKz/v and larger values of 
U, y /v  or vice versa since in these regions the two-dimensional logarithmic law 
holds. 

The results of Paradis (1963) away from the plane of symmetry but deep in the 
corner are not given so that checks using this data are not possible in this region. 

In the region specified by the general form 

it is possible to compare the present measurements for zero pressure gradient 
and those of Paradis by plotting lines of constant (uo- u)/uK against y/S’ and 
z/S’. This is done in figure 16. Only the mean lines as obtained from the various 
data are given for clarity. The agreement is seen to be fairly good out to values of 
y/S’ and z/S’ of about 0.6. The failure of the correlation a t  this range is easily 
explained. Equation (12) depends for its validity on the assumption that UT, has 
a negligible effect in the region compared to U,. At large values of y/S‘ or z/S‘ 
this is obviously no longer true. The different dependence of UT2 and U, upon 
Reynolds number would explain the difference in form of the lines of constant 
velocity in this region which are observed in figure 16. 

It should be noted in closing this discussion that the various similarity mgu- 
ments used to describe the x-direction flow in zero pressure gradient should also 
apply in t,heir general form to the expected secondary currents in the various 
regions. Unfortunately reliable experimental measurements of secondary cur- 
rents are not available so it is not possible to test this conclusion against experi- 
mental evidence. 

7. Secondary currents 
A streamwise vorticity equation containing small order terms is easily derived 

from the full Navier-Stokes equations by eliminating pressure from the equations. 
The result is similar to the equation studied by Brundrett & Baines (1964) in the 
fully developed square duct oase. However, the appearance of additional terms 
which include derivatives of quantities with respect to x complicate the present 
flow. These terms will also produce vorticity of an unknown form and the 
analysis would be considerably more complicated than the square duct case. 
An expcrirnental study would also present problems since terms of the type of 
U(aV/ax) would need to be measured. In  spite of the fairly obvious existence of 
these currents (see figures 3,4 and 5 where the distortion of flow variables is quite 
similar to the case of fully developed square duct flow) their analysis would seem 
to be extremely difficult. 

8. Conclusions 
(i) A momentum integral equation closely analogous to that used in two- 

dimensional boundary layers is easily derived for the corner boundary layer. 
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The use of this equation is, however, limited by the difficulty of measuring the 
parameters which appear. 

(ii) Similarity arguments similar to those used in two-dimensional boundary 
layers may be used to describe the turbulent flow in corners. More data at  a wider 
range of Reynolds numbers is needed to justify these relations. 

(iii) The experimental evidence suggests secondary currents in this type of 
flow but no analysis is available at  present. 

I am indebted to the Athlone Committee of the Board of Trade and to the 
National Research Council of Canada for their financial support of this work and 
to Professor W. A. Mair for his help and guidance. 
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